Metric Projection onto a Lattice in L1

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast projection onto the simplex and the l1 ball

A new algorithm is proposed to project, exactly and in finite time, a vector of arbitrary size onto a simplex or a ℓ 1-norm ball. The algorithm is demonstrated to be faster than existing methods. In addition, a wrong statement in a paper by Duchi et al. is corrected and an adversary sequence for Michelot's algorithm is exhibited, showing that it has quadratic complexity in the worst case.

متن کامل

Projection Onto A Simplex

This mini-paper presents a fast and simple algorithm to compute the projection onto the canonical simplex 4. Utilizing the Moreau’s identity, we show that the problem is essentially a univariate minimization and the objective function is strictly convex and continuously differentiable. Moreover, it is shown that there are at most n candidates which can be computed explicitly, and the minimizer ...

متن کامل

L1-Distance Projection onto the Boundary of a Convex Set: Simple Characterization

We show that the minimum distance projection in the L1-norm from an interior point onto the boundary of a convex set is achieved by a single, unidimensional projection. Application of this characterization when the convex set is a polyhedron leads to either an elementary minmax problem or a set of easily solved linear programs, depending upon whether the polyhedron is given as the intersection ...

متن کامل

Projection onto a Polyhedron that Exploits Sparsity

An algorithm is developed for projecting a point onto a polyhedron. The algorithm solves a dual version of the projection problem and then uses the relationship between the primal and dual to recover the projection. The techniques in the paper exploit sparsity. Sparse reconstruction by separable approximation (SpaRSA) is used to approximately identify active constraints in the polyhedron, and t...

متن کامل

Projection onto a Polyhedron That Exploits

An algorithm is developed for projecting a point onto a polyhedron. The algorithm solves a dual version of the projection problem and then uses the relationship between the primal and dual to recover the projection. The techniques in the paper exploit sparsity. SpaRSA (Sparse Reconstruction by Separable Approximation) is used to approximately identify active constraints in the polyhedron, and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1994

ISSN: 0021-9045

DOI: 10.1006/jath.1994.1069